Hardness of discrepancy and related problems parameterized by the dimension

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner

March 22, 2010

Basics

Geometric Discrepancy
Parameterized Complexity
Maximum-Empty-Subinterval
Our Results
Overview
Hardness of Maximum-Empty-Subinterval
The construction
Encoding vertices
Encoding edges
Correctness
Approximation
Conclusion
Adaption to the other problems

How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^{d}. We set

$$
D_{O}(P):=\left|\frac{|P \cap O|}{|P|}-\operatorname{vol}(O)\right| .
$$

How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^{d}. We set

$$
D_{O}(P):=\left|\frac{|P \cap O|}{|P|}-\operatorname{vol}(O)\right| .
$$

How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^{d}. We set

$$
D_{O}(P):=\left|\frac{|P \cap O|}{|P|}-\operatorname{vol}(O)\right| .
$$

How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^{d}. We set

$$
D_{O}(P):=\left|\frac{|P \cap O|}{|P|}-\operatorname{vol}(O)\right| .
$$

The Star Discrepancy is defined as

$$
D^{*}(P)=\max _{I \in \mathcal{I}^{*}} D_{l}(P)
$$

where \mathcal{I}^{*} is the set of all boxes inside the unit cube that contain the origin.
The Box Discrepancy is defined as

$$
D(P)=\max _{I \in \mathcal{I}} D_{l}(P)
$$

where \mathcal{I} is the set of all boxes inside the unit cube.

Fixed-parameter tractability and parameterized hardness

- A parameterized decision problem is a language $L \subseteq \Sigma^{*} \times \mathbb{N}$.

Fixed-parameter tractability and parameterized hardness

- A parameterized decision problem is a language $L \subseteq \Sigma^{*} \times \mathbb{N}$.
- L is fixed-parameter tractable, if it can be decided in $\mathcal{O}\left(f(k) \cdot|x|^{c}\right)$ time whether $(x, k) \in L$.

Fixed-parameter tractability and parameterized hardness

- A parameterized decision problem is a language $L \subseteq \Sigma^{*} \times \mathbb{N}$.
- L is fixed-parameter tractable, if it can be decided in $\mathcal{O}\left(f(k) \cdot|x|^{c}\right)$ time whether $(x, k) \in L$.
- A problem is W [1]-hard if the k-Clique problem can be reduced to it by a parameterized reduction.

The Maximum-Empty-Subinterval problem

Given: A finite point set P inside the d-dimensional unit cube, a number V.
Question: Is there a box inside $[0,1]^{d}$ containing the origin and none of the points that has volume at least V ?

The following problems are $\mathrm{W}[1]$-hard with respect to the dimension (and NP-hard):

- Maximum-Empty-Subinterval

The following problems are $\mathrm{W}[1]$-hard with respect to the dimension (and NP-hard):

- Maximum-Empty-Subinterval
- Star-Discrepancy

The following problems are $\mathrm{W}[1]$-hard with respect to the dimension (and NP-hard):

- Maximum-Empty-Subinterval
- Star-Discrepancy
- Maximum-Empty-Box

The following problems are $\mathrm{W}[1]$-hard with respect to the dimension (and NP-hard):

- Maximum-Empty-Subinterval
- Star-Discrepancy
- Maximum-Empty-Box
- Box-Discrepancy

The following problems are $\mathrm{W}[1]$-hard with respect to the dimension (and NP-hard):

- Maximum-Empty-Subinterval

The construction Encoding vertices Encoding edges

Correctness

Approximation

Overview

- Reduction from k-Clique

Overview

- Reduction from k-Clique
- For $G=([n], E)$ and an integer k, we will construct a set of points in $\mathbb{R}^{2 k}$ that admits an empty box of volume C^{k} iff G has a k-clique.

Overview

- Reduction from k-Clique
- For $G=([n], E)$ and an integer k, we will construct a set of points in $\mathbb{R}^{2 k}$ that admits an empty box of volume C^{k} iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices

Overview

- Reduction from k-Clique
- For $G=([n], E)$ and an integer k, we will construct a set of points in $\mathbb{R}^{2 k}$ that admits an empty box of volume C^{k} iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices
- and additionally into their pairwise product to encode the edges.

Overview

- Reduction from k-Clique
- For $G=([n], E)$ and an integer k, we will construct a set of points in $\mathbb{R}^{2 k}$ that admits an empty box of volume C^{k} iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices
- and additionally into their pairwise product to encode the edges.
- Observe: As the origin must be contained, the planes can be considered separately.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

Let $\mu>1$ and $C:=1 / \mu^{n-1}<1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.

- A selection of k such rectangles corresponds to a subset of vertices of G.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i-th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i-th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i-th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i-th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

$$
\text { - } r_{i j}^{\mathrm{kill}^{\prime}}(u v)
$$

- Add a point in the product of the two planes $\left(\mathbb{R}^{4}\right)$.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i-th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

$$
\text { - } r_{i j}^{\mathrm{kill}^{\prime}}(u v)
$$

- Add a point in the product of the two planes $\left(\mathbb{R}^{4}\right)$.
- The two rectangles cannot be chosen at the same time.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i-th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

$$
\text { - } r_{i j}^{\mathrm{kill}}(u v)
$$

- Add a point in the product of the two planes $\left(\mathbb{R}^{4}\right)$.
- The two rectangles cannot be chosen at the same time.
- Do this for all $1 \leq i \neq j \leq k$ and all $u v \notin E$.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i-th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

$$
\text { - } r_{i j}^{\mathrm{kill}^{\prime}}(u v)
$$

- Add a point in the product of the two planes $\left(\mathbb{R}^{4}\right)$.
- The two rectangles cannot be chosen at the same time.
- Do this for all $1 \leq i \neq j \leq k$ and all $u v \notin E$.

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the $i-$ th \mathbb{R}^{2} and to v in the j-th \mathbb{R}^{2} for $u v \notin E$.

$$
\text { - } r_{i j}^{k_{i j l l}}(u v)
$$

- Add a point in the product of the two planes $\left(\mathbb{R}^{4}\right)$.
- The two rectangles cannot be chosen at the same time.
- Do this for all $1 \leq i \neq j \leq k$ and all $u v \notin E$.

Correctness

Lemma

G has a k-clique iff there is an empty box of size C^{k}.
Theorem
Maximum-Empty-Box is W[1]-hard with respect to the dimension.

Corollary

Unless $W[1]=F P T$, there is no algorithm running in time $\mathcal{O}\left(f(d) \cdot|P|^{c}\right)$ for this problem.

An even stronger result

- Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C / μ in one plane.

An even stronger result

- Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C / μ in one plane.
- An empty box can have a total volume of at most C^{k} / μ.

An even stronger result

- Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C / μ in one plane.
- An empty box can have a total volume of at most C^{k} / μ.
- Choosing μ large creates a large gap between positive and negative instances.

An even stronger result

- Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C / μ in one plane.
- An empty box can have a total volume of at most C^{k} / μ.
- Choosing μ large creates a large gap between positive and negative instances.
- Approximating the problem by, e. g., a factor of $1 / 2^{|P|}$ is NP-hard!

Shrink and lift

The proof can be modified to show the $\mathrm{W}[1]$-hardness of - Star-Discrepancy

Shrink and lift

The proof can be modified to show the $\mathrm{W}[1]$-hardness of

- Star-Discrepancy
- Maximum-Empty-Box

Shrink and lift

The proof can be modified to show the $\mathrm{W}[1]$-hardness of

- Star-Discrepancy
- Maximum-Empty-Box
- Box-Discrepancy.

Thank You.

