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How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and
O be a subset of Rd . We set

DO(P) :=

∣∣∣∣
|P ∩ O|
|P| − vol(O)

∣∣∣∣ .
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Let P be a finite set of points in the d-dimensional unit cube and
O be a subset of Rd . We set

DO(P) :=

∣∣∣∣
|P ∩ O|
|P| − vol(O)

∣∣∣∣ .

DO(P ) =
∣∣∣∣
2
10 − 1

5

∣∣∣∣ = 0
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The Star Discrepancy is defined as

D∗(P) = max
I∈I∗

DI (P)

where I∗ is the set of all boxes inside the unit cube that contain
the origin.
The Box Discrepancy is defined as

D(P) = max
I∈I

DI (P)

where I is the set of all boxes inside the unit cube.
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Fixed-parameter tractability and parameterized hardness

I A parameterized decision problem is a language L ⊆ Σ∗ × N.

I L is fixed-parameter tractable, if it can be decided in
O (f (k) · |x |c) time whether (x , k) ∈ L.

I A problem is W [1]–hard if the k–Clique problem can be
reduced to it by a parameterized reduction.
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The Maximum-Empty-Subinterval problem

Given: A finite point set P inside the d-dimensional unit cube, a
number V .
Question: Is there a box inside [0, 1]d containing the origin and
none of the points that has volume at least V ?
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Overview

The following problems are W[1]–hard with respect to the
dimension (and NP–hard):

I Maximum-Empty-Subinterval

I Star-Discrepancy

I Maximum-Empty-Box

I Box-Discrepancy
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Overview

I Reduction from k–Clique

I For G = ([n],E ) and an integer k , we will construct a set of
points in R2k that admits an empty box of volume C k iff G
has a k–clique.

I We will place points into k orthogonal planes to encode the
vertices

I and additionally into their pairwise product to encode the
edges.

I Observe: As the origin must be contained, the planes can be
considered separately.

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner Hardness of discrepancy and related problems



Outline
Basics

Our Results
Hardness of Maximum-Empty-Subinterval

Conclusion

The construction
Encoding vertices
Encoding edges
Correctness
Approximation

Overview

I Reduction from k–Clique

I For G = ([n],E ) and an integer k , we will construct a set of
points in R2k that admits an empty box of volume C k iff G
has a k–clique.

I We will place points into k orthogonal planes to encode the
vertices

I and additionally into their pairwise product to encode the
edges.

I Observe: As the origin must be contained, the planes can be
considered separately.

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner Hardness of discrepancy and related problems



Outline
Basics

Our Results
Hardness of Maximum-Empty-Subinterval

Conclusion

The construction
Encoding vertices
Encoding edges
Correctness
Approximation

Overview

I Reduction from k–Clique

I For G = ([n],E ) and an integer k , we will construct a set of
points in R2k that admits an empty box of volume C k iff G
has a k–clique.

I We will place points into k orthogonal planes to encode the
vertices

I and additionally into their pairwise product to encode the
edges.

I Observe: As the origin must be contained, the planes can be
considered separately.

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner Hardness of discrepancy and related problems



Outline
Basics

Our Results
Hardness of Maximum-Empty-Subinterval

Conclusion

The construction
Encoding vertices
Encoding edges
Correctness
Approximation

Overview

I Reduction from k–Clique

I For G = ([n],E ) and an integer k , we will construct a set of
points in R2k that admits an empty box of volume C k iff G
has a k–clique.

I We will place points into k orthogonal planes to encode the
vertices

I and additionally into their pairwise product to encode the
edges.

I Observe: As the origin must be contained, the planes can be
considered separately.

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner Hardness of discrepancy and related problems



Outline
Basics

Our Results
Hardness of Maximum-Empty-Subinterval

Conclusion

The construction
Encoding vertices
Encoding edges
Correctness
Approximation

Overview

I Reduction from k–Clique

I For G = ([n],E ) and an integer k , we will construct a set of
points in R2k that admits an empty box of volume C k iff G
has a k–clique.

I We will place points into k orthogonal planes to encode the
vertices

I and additionally into their pairwise product to encode the
edges.

I Observe: As the origin must be contained, the planes can be
considered separately.

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner Hardness of discrepancy and related problems



Outline
Basics

Our Results
Hardness of Maximum-Empty-Subinterval

Conclusion

The construction
Encoding vertices
Encoding edges
Correctness
Approximation

Let µ > 1 and C := 1/µn−1 < 1. In each of the k planes, we place
n + 1 points (n large rectangles) as follows.

(x,C/x)
y

x

I A selection of k such rectangles corresponds to a subset of
vertices of G .
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How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th R2 and to
v in the j–th R2 for uv /∈ E .

I Add a point in the product of the two planes (R4).

I The two rectangles cannot be chosen at the same time.

I Do this for all 1 ≤ i 6= j ≤ k and all uv /∈ E .
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Correctness

Lemma
G has a k–clique iff there is an empty box of size C k .

Theorem
Maximum-Empty-Box is W[1]–hard with respect to the
dimension.

Corollary

Unless W[1] = FPT, there is no algorithm running in time
O (f (d) · |P|c) for this problem.
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An even stronger result

I Observe: If there is no k–clique, we need to choose at least
one rectangle of size at most C/µ in one plane.

I An empty box can have a total volume of at most C k/µ.

I Choosing µ large creates a large gap between positive and
negative instances.

I Approximating the problem by, e. g., a factor of 1/2|P| is
NP–hard!
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Adaption to the other problems

Shrink and lift

The proof can be modified to show the W[1]–hardness of

I Star-Discrepancy

I Maximum-Empty-Box

I Box-Discrepancy.
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Adaption to the other problems

Thank You.
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