Hardness of discrepancy and related problems parameterized by the dimension

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner

March 22, 2010

Outline

Basics Our Results Hardness of Maximum-Empty-Subinterval Conclusion

Basics

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

Our Results

Overview

Hardness of Maximum-Empty-Subinterval

The construction Encoding vertices Encoding edges Correctness Approximation

Conclusion

Adaption to the other problems

・ 同 ト ・ ヨ ト ・ ヨ ト

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

소리가 소문가 소문가 소문가

3

How equally distributed is a point set?

$$D_O(P) := \left| \frac{|P \cap O|}{|P|} - \operatorname{vol}(O) \right|$$

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

イロト イポト イヨト イヨト

How equally distributed is a point set?

$$\mathcal{D}_O(P) := \left| \frac{|P \cap O|}{|P|} - \mathsf{vol}(O) \right|$$

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

소리가 소문가 소문가 소문가

How equally distributed is a point set?

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

イロト イポト イヨト イヨト

How equally distributed is a point set?

$$\mathcal{D}_O(P) := \left| \frac{|P \cap O|}{|P|} - \mathsf{vol}(O) \right|$$

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

イロト イポト イヨト イヨト

The Star Discrepancy is defined as

$$D^*(P) = \max_{I \in \mathcal{I}^*} D_I(P)$$

where \mathcal{I}^\ast is the set of all boxes inside the unit cube that contain the origin.

The Box Discrepancy is defined as

$$D(P) = \max_{I \in \mathcal{I}} D_I(P)$$

where $\ensuremath{\mathcal{I}}$ is the set of all boxes inside the unit cube.

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

イロト イポト イヨト イヨト

Fixed-parameter tractability and parameterized hardness

• A parameterized decision problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$.

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

イロト イポト イヨト イヨト

Fixed-parameter tractability and parameterized hardness

- A parameterized decision problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$.
- ► *L* is *fixed-parameter tractable*, if it can be decided in $\mathcal{O}(f(k) \cdot |x|^c)$ time whether $(x, k) \in L$.

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

イロト イポト イヨト イヨト

Fixed-parameter tractability and parameterized hardness

- A parameterized decision problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$.
- ► *L* is *fixed-parameter tractable*, if it can be decided in $\mathcal{O}(f(k) \cdot |x|^c)$ time whether $(x, k) \in L$.
- ► A problem is W[1]-hard if the k-CLIQUE problem can be reduced to it by a parameterized reduction.

Geometric Discrepancy Parameterized Complexity Maximum-Empty-Subinterval

The Maximum-Empty-Subinterval problem

Given: A finite point set P inside the d-dimensional unit cube, a number V.

Question: Is there a box inside $[0, 1]^d$ containing the origin and none of the points that has volume at least *V*?

The following problems are W[1]–hard with respect to the dimension (and NP–hard):

► MAXIMUM-EMPTY-SUBINTERVAL

・ロン ・回と ・ヨン ・ヨン

æ

The following problems are W[1]–hard with respect to the dimension (and NP–hard):

- ► Maximum-Empty-Subinterval
- Star-Discrepancy

3

The following problems are W[1]–hard with respect to the dimension (and NP–hard):

- ► Maximum-Empty-Subinterval
- Star-Discrepancy
- ► MAXIMUM-Empty-Box

The following problems are W[1]–hard with respect to the dimension (and NP–hard):

- ► Maximum-Empty-Subinterval
- Star-Discrepancy
- ► MAXIMUM-Empty-Box
- Box-Discrepancy

3

The following problems are W[1]–hard with respect to the dimension (and NP–hard):

► MAXIMUM-EMPTY-SUBINTERVAL

・ロン ・回と ・ヨン ・ヨン

æ

The construction Encoding vertices Encoding edges Correctness Approximation

イロン イヨン イヨン イヨン

æ

Overview

▶ Reduction from *k*−CLIQUE

The construction Encoding vertices Encoding edges Correctness Approximation

・ロン ・回と ・ヨン・

3

- ▶ Reduction from *k*−CLIQUE
- For G = ([n], E) and an integer k, we will construct a set of points in ℝ^{2k} that admits an empty box of volume C^k iff G has a k-clique.

The construction Encoding vertices Encoding edges Correctness Approximation

イロン イヨン イヨン イヨン

- ▶ Reduction from *k*−CLIQUE
- For G = ([n], E) and an integer k, we will construct a set of points in ℝ^{2k} that admits an empty box of volume C^k iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices

The construction Encoding vertices Encoding edges Correctness Approximation

・ロン ・回と ・ヨン・

- ▶ Reduction from *k*−CLIQUE
- For G = ([n], E) and an integer k, we will construct a set of points in ℝ^{2k} that admits an empty box of volume C^k iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices
- and additionally into their pairwise product to encode the edges.

The construction Encoding vertices Encoding edges Correctness Approximation

- ▶ Reduction from *k*−CLIQUE
- For G = ([n], E) and an integer k, we will construct a set of points in ℝ^{2k} that admits an empty box of volume C^k iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices
- and additionally into their pairwise product to encode the edges.
- Observe: As the origin must be contained, the planes can be considered separately.

・ロン ・回 と ・ ヨ と ・ ヨ と

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

・ロト ・回ト ・ヨト ・ヨト

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

・ロン ・回と ・ヨン・

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

・ロト ・回ト ・ヨト ・ヨト

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

・ロト ・回ト ・ヨト ・ヨト

3

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

・ロト ・回ト ・ヨト ・ヨト

 Outline Basics
 The construction Encoding vertices

 Our Results
 Encoding edges

 Hardness of Maximum-Empty-Subinterval Conclusion
 Correctness

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

・ロン ・回と ・ヨン ・ヨン

 Outline Basics
 The construction Encoding vertices

 Our Results
 Encoding deges

 Hardness of Maximum-Empty-Subinterval Conclusion
 Correctness

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

・ロト ・回ト ・ヨト ・ヨト

 Outline Basics
 The construction

 Basics
 Encoding vertices

 Our Results
 Encoding edges

 Hardness of Maximum-Empty-Subinterval Conclusion
 Approximation

Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place n+1 points (n large rectangles) as follows.

► A selection of k such rectangles corresponds to a subset of vertices of G.

イロン イヨン イヨン イヨン

The construction Encoding vertices Encoding edges Correctness Approximation

How to forbid certain large rectangles?

The construction Encoding vertices Encoding edges Correctness Approximation

イロト イポト イヨト イヨト

How to forbid certain large rectangles?

The construction Encoding vertices Encoding edges Correctness Approximation

イロト イポト イヨト イヨト

How to forbid certain large rectangles?

The construction Encoding vertices Encoding edges Correctness Approximation

イロト イポト イヨト イヨト

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the *i*-th \mathbb{R}^2 and to v in the *j*-th \mathbb{R}^2 for $uv \notin E$.

• Add a point in the product of the two planes (\mathbb{R}^4) .

The construction Encoding vertices Encoding edges Correctness Approximation

How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the *i*-th \mathbb{R}^2 and to v in the *j*-th \mathbb{R}^2 for $uv \notin E$.

- Add a point in the product of the two planes (\mathbb{R}^4).
- The two rectangles cannot be chosen at the same time.

The construction Encoding vertices Encoding edges Correctness Approximation

How to forbid certain large rectangles?

- Add a point in the product of the two planes (\mathbb{R}^4) .
- The two rectangles cannot be chosen at the same time.
- ▶ Do this for all $1 \le i \ne j \le k$ and all $uv \notin E$.

The construction Encoding vertices Encoding edges Correctness Approximation

How to forbid certain large rectangles?

- Add a point in the product of the two planes (\mathbb{R}^4) .
- The two rectangles cannot be chosen at the same time.
- ▶ Do this for all $1 \le i \ne j \le k$ and all $uv \notin E$.

The construction Encoding vertices Encoding edges Correctness Approximation

How to forbid certain large rectangles?

- Add a point in the product of the two planes (\mathbb{R}^4) .
- The two rectangles cannot be chosen at the same time.
- ▶ Do this for all $1 \le i \ne j \le k$ and all $uv \notin \underline{E}$.

The construction Encoding vertices Encoding edges Correctness Approximation

Lemma

G has a k-clique iff there is an empty box of size C^k .

Theorem

MAXIMUM-EMPTY-BOX is W[1]-hard with respect to the dimension.

Corollary

Unless W[1] = FPT, there is no algorithm running in time $\mathcal{O}(f(d) \cdot |P|^c)$ for this problem.

The construction Encoding vertices Encoding edges Correctness Approximation

An even stronger result

► Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C/µ in one plane.

The construction Encoding vertices Encoding edges Correctness Approximation

An even stronger result

- ► Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C/µ in one plane.
- An empty box can have a total volume of at most C^k/μ .

The construction Encoding vertices Encoding edges Correctness Approximation

An even stronger result

- ► Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C/µ in one plane.
- An empty box can have a total volume of at most C^k/μ .
- Choosing µ large creates a large gap between positive and negative instances.

The construction Encoding vertices Encoding edges Correctness Approximation

소리가 소문가 소문가 소문가

An even stronger result

- ► Observe: If there is no k-clique, we need to choose at least one rectangle of size at most C/µ in one plane.
- An empty box can have a total volume of at most C^k/μ .
- Choosing µ large creates a large gap between positive and negative instances.
- Approximating the problem by, e. g., a factor of 1/2^{|P|} is NP-hard!

Adaption to the other problems

・ロン ・回 と ・ ヨン ・ ヨン

3

Shrink and lift

The proof can be modified to show the W[1]-hardness of

STAR-DISCREPANCY

Adaption to the other problems

・ロト ・回ト ・ヨト ・ヨト

æ

Shrink and lift

The proof can be modified to show the W[1]-hardness of

- STAR-DISCREPANCY
- ► MAXIMUM-EMPTY-BOX

Adaption to the other problems

・ロン ・回と ・ヨン ・ヨン

æ

Shrink and lift

The proof can be modified to show the W[1]-hardness of

- STAR-DISCREPANCY
- ► MAXIMUM-EMPTY-BOX
- ► BOX-DISCREPANCY.

Adaption to the other problems

・ロン ・回 と ・ヨン ・ヨン

Э

Thank You.