On the computational complexity of Ham-Sandwich cuts, Helly sets and related problems

Christian Knauer (U Bayreuth) Hans Raj Tiwary (UL Bruxelles) Daniel Werner (FU Berlin)

March 12, 2011

Basics

The Ham-Sandwich Theorem Our results *d*-Sum

d-Ham-Sandwich

The idea The construction Correctness Summary

Further results

- 4 回 2 - 4 □ 2 - 4 □

æ

The Ham-Sandwich Theorem Our results *d*-Sum

▲ □ → ▲ 三

< ≣⇒

æ

The planar case

Let $P = R \cup B$. Then there is a line that *bisects* both sets simultaneously.

The Ham-Sandwich Theorem Our results *d*-Sum

The planar case

Let $P = R \cup B$. Then there is a line that *bisects* both sets simultaneously.

Such a line can be found in linear time! [Edelsbrunner, Waupotitsch; '86]

Christian Knauer, Hans Raj Tiwary, Daniel Werner

The Ham-Sandwich Theorem Our results *d*-Sum

・ロト ・回ト ・ヨト

æ

- ∢ ≣ ▶

General version

Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

The Ham-Sandwich Theorem Our results *d*-Sum

æ

- < ∃ >

Image: A □ > A

General version

Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam

Christian Knauer, Hans Raj Tiwary, Daniel Werner Ham-Sandwich cuts

The Ham-Sandwich Theorem Our results *d*-Sum

æ

- < ∃ >

A (1) > A (1) > A

General version

Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam

known bounds:

trivial algorithm: n^{d+1}

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

General version

Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: n^{d+1}
- ▶ best known: O (n^{d-1}) [Lo, Matoušek, Steiger; '92]

The Ham-Sandwich Theorem Our results *d*-Sum

< 🗇 > < 🖃 >

General version

Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: n^{d+1}
- ▶ best known: $O(n^{d-1})$ [Lo, Matoušek, Steiger; '92]
- recently: O(n log^d n) for well separated point sets
 [Bárány, Hubard, Jéronimo; '08], [Steiger, Zhao; '09]

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

The decision problem

Can we find a cut incrementally?

Christian Knauer, Hans Raj Tiwary, Daniel Werner Ham-Sandwich cuts

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

The decision problem

Can we find a cut incrementally? (*d*-HAM-SANDWICH) Given: Sets P_1, \ldots, P_d in \mathbb{R}^d

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

The decision problem

Can we find a cut incrementally?

(*d*-HAM-SANDWICH)

Given: Sets P_1, \ldots, P_d in \mathbb{R}^d **Question:** Is there a ham-sandwich cut through the origin?

The Ham-Sandwich Theorem Our results *d*-Sum

- 4 回 2 - 4 □ 2 - 4 □

æ

The decision problem

Can we find a cut incrementally?

(*d*-HAM-SANDWICH)

Given: Sets P_1, \ldots, P_d in \mathbb{R}^d **Question:** Is there a ham-sandwich cut through the origin?

Alternatively:

Given: Sets P_1, \ldots, P_{d+1} in \mathbb{R}^d **Question:** Is there a ham-sandwich cut?

The Ham-Sandwich Theorem Our results *d*-Sum

(4回) (4回) (4回)

The decision problem

Can we find a cut incrementally?

(*d*-HAM-SANDWICH)

Given: Sets P_1, \ldots, P_d in \mathbb{R}^d **Question:** Is there a ham-sandwich cut through the origin?

Alternatively:

Given: Sets P_1, \ldots, P_{d+1} in \mathbb{R}^d **Question:** Is there a ham-sandwich cut?

No complexity results known so far.

The Ham-Sandwich Theorem Our results *d*-Sum

・ロン ・回 と ・ ヨ と ・ ヨ と …

æ

Our results

If the dimension is part of the input, d-HAM-SANDWICH is

Christian Knauer, Hans Raj Tiwary, Daniel Werner Ham-Sandwich cuts

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

Our results

If the dimension is part of the input, d-HAM-SANDWICH is

▶ NP-hard (does not exclude *O*(*n*) for every fixed dimension)

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

Our results

If the dimension is part of the input, d-HAM-SANDWICH is

- ▶ NP-hard (does not exclude O(n) for every fixed dimension)
- ▶ W[1]-hard when parameterized with the dimension

The Ham-Sandwich Theorem Our results *d*-Sum

イロン 不同と 不同と 不同と

æ

Our results

If the dimension is part of the input, d-HAM-SANDWICH is

- ▶ NP-hard (does not exclude O(n) for every fixed dimension)
- W[1]-hard when parameterized with the dimension
- requires $n^{\Omega(d)}$ time, unless 3-SAT can be solved in $2^{o(n)}$

The Ham-Sandwich Theorem Our results *d*-Sum

æ

The d-SUM problem

(*d*-SUM)

Given: A set of integers $S = \{s_1, \ldots, s_n\}$.

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

The d-SUM problem

(d-SUM)

Given: A set of integers $S = \{s_1, \ldots, s_n\}$. **Question:** Do *d* of them sum up to 0?

The Ham-Sandwich Theorem Our results *d*-Sum

イロト イヨト イヨト イヨト

æ

The *d*-SUM problem

(d-SUM)

Given: A set of integers $S = \{s_1, \ldots, s_n\}$. **Question:** Do *d* of them sum up to 0?

▶ parameterized version of SUBSET-SUM

The Ham-Sandwich Theorem Our results *d*-Sum

æ

The *d*-SUM problem

(d-SUM)

Given: A set of integers $S = \{s_1, \ldots, s_n\}$. **Question:** Do *d* of them sum up to 0?

- ▶ parameterized version of SUBSET-SUM
- W[1]-hard [Fellows, Koblitz; '93]

The Ham-Sandwich Theorem Our results *d*-Sum

イロン 不同と 不同と 不同と

æ

The *d*-SUM problem

(*d*-SUM)

Given: A set of integers $S = \{s_1, \ldots, s_n\}$. **Question:** Do *d* of them sum up to 0?

- ▶ parameterized version of SUBSET-SUM
- W[1]-hard [Fellows, Koblitz; '93]
- requires n^{Ω(d)} time, unless 3-SAT can be solved in 2^{o(n)}
 [Pătrașcu, Williams; '10]

The idea The construction Correctness Summary

<ロ> <部> <部> <き> <き> <

2

The idea

Reduction from d-SUM

Christian Knauer, Hans Raj Tiwary, Daniel Werner Ham-Sandwich cuts

The idea The construction Correctness Summary

æ

The idea

Reduction from d-SUM

General idea: *Embed* the numbers as points into $\mathbb{R}^{f(d)}$ that have a certain property iff there are *d* numbers that sum up to 0.

The idea The construction Correctness Summary

・ロト ・日本 ・モート ・モート

The idea

Reduction from d-SUM

General idea: *Embed* the numbers as points into $\mathbb{R}^{f(d)}$ that have a certain property iff there are *d* numbers that sum up to 0.

Here: Construct point sets P_1, \ldots, P_{d+1} in \mathbb{R}^{d+1} such that

The idea The construction Correctness Summary

The idea

Reduction from d-SUM

General idea: *Embed* the numbers as points into $\mathbb{R}^{f(d)}$ that have a certain property iff there are *d* numbers that sum up to 0.

Here: Construct point sets P_1, \ldots, P_{d+1} in \mathbb{R}^{d+1} such that

there exists a linear ham-sandwich cut

 \Leftrightarrow

d of the numbers sum up to 0.

The idea The construction Correctness Summary

・ロン ・回と ・ヨン・

æ

Encoding the numbers

Let $S = \{s_1, \ldots, s_n\}$

Christian Knauer, Hans Raj Tiwary, Daniel Werner Ham-Sandwich cuts

The idea The construction Correctness Summary

イロン イヨン イヨン イヨン

æ

Encoding the numbers

Let $S = \{s_1, \dots, s_n\}$

Goal: Construct *d* sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from *S* (and one extra set later)

The idea The construction Correctness Summary

▲ □ ► ▲ □ ►

Encoding the numbers

Let
$$S = \{s_1, \ldots, s_n\}$$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S (and one extra set later)

such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.

The idea The construction Correctness Summary

イロト イヨト イヨト イヨト

Encoding the numbers

Let
$$S = \{s_1, \ldots, s_n\}$$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S (and one extra set later)

such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.

In dimension j: add point $p_i^j := \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$ for $1 \le i \le n$

The idea The construction Correctness Summary

Encoding the numbers

Let
$$S = \{s_1, \ldots, s_n\}$$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S (and one extra set later)

such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.

In dimension j: add point $p_i^j := \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$ for $1 \le i \le n$

< □ > < @ > < 注 > < 注 > ... 注

The idea The construction Correctness Summary

Encoding the numbers

Let
$$S = \{s_1, \ldots, s_n\}$$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S (and one extra set later)

such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.

In dimension j: add point $p_i^j := \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$ for $1 \le i \le n$

・ロト ・日本 ・モート ・モート

Observe: if $h \cdot p_i^j = 0$ then $h_j = -h_{d+1}s_i$.

The idea The construction Correctness Summary

イロト イヨト イヨト イヨト

æ

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

The idea The construction Correctness Summary

<**₽** > < **≥** >

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

 \Rightarrow add *balancing* points

The idea The construction Correctness Summary

< ₫ > < Ξ

3

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

 \Rightarrow add *balancing* points

The idea The construction Correctness Summary

イロン 不同と 不同と 不同と

æ

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

The idea The construction Correctness Summary

</i>
< □ > < □ >

∢ ≣⇒

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

The idea The construction Correctness Summary

< A > < 3

-≣->

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

The idea The construction Correctness Summary

▲ 御 ▶ | ▲ 臣 ▶

_∢ ≣ ≯

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

The idea The construction Correctness Summary

- 4 回 2 - 4 □ 2 - 4 □

æ

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

The idea The construction Correctness Summary

イロト イヨト イヨト イヨト

æ

The point q

One extra point will ensure that

none of the balancing points can lie on a linear cut

The idea The construction Correctness Summary

イロト イヨト イヨト イヨト

The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut
- if points lie on linear cut \Rightarrow corresponding numbers sum to 0

The idea The construction Correctness Summary

The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut
- if points lie on linear cut \Rightarrow corresponding numbers sum to 0

Set

$$q = -\sum_{i=1}^d \mathbf{e}_i$$

イロト イヨト イヨト イヨト

æ

and $P_{d+1} = \{q\}.$

The idea The construction Correctness Summary

・ロト ・回ト ・ヨト ・ヨト

æ

Some facts

Every linear cut

must contain q

The idea The construction Correctness Summary

イロト イヨト イヨト イヨト

æ

Some facts

Every linear cut

- must contain q
- contains exactly one point from each P_i

The idea The construction Correctness Summary

Image: A □ > A

-∢ ≣ ≯

Some facts

Every linear cut

- must contain q
- contains exactly one point from each P_i
- contains none of the balancing points

The idea The construction Correctness Summary

・ロン ・四と ・日と ・日と

æ

Why it works

Claim:

There are d numbers that sum to 0.

 \Leftrightarrow

There is a linear ham-sandwich cut.

The idea The construction Correctness Summary

・ロン ・回 と ・ ヨン ・ モン

æ

Why it works

$$\Rightarrow$$
: Let $\sum_{j=1}^{d} s_{i_j} = 0$.

The idea The construction Correctness Summary

・ロン ・回 と ・ ヨン ・ モン

æ

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}, \ 1 \le j \le d$

The idea The construction Correctness Summary

・ロン ・回 と ・ ヨン ・ モン

æ

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}$, $1 \le j \le d$ and $h_{d+1} = -1$.

The idea The construction Correctness Summary

・ロン ・四 と ・ ヨ と ・ モ と

æ

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}, \ 1 \le j \le d$ and $h_{d+1} = -1.$
Then

The idea The construction Correctness Summary

・ロン ・四 と ・ ヨ と ・ モ と

2

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}$, $1 \le j \le d$ and $h_{d+1} = -1$.
Then

$$hp_{i_j}^j = h\left(\frac{1}{s_{i_j}}\cdot\mathbf{e}_j + \mathbf{e}_{d+1}\right)$$

The idea The construction Correctness Summary

・ロン ・四 と ・ ヨ と ・ モ と

æ

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}, \ 1 \le j \le d$ and $h_{d+1} = -1.$
Then

$$h p_{i_j}^j = h \left(rac{1}{s_{i_j}} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}
ight) = s_{i_j} rac{1}{s_{i_j}} - 1$$

The idea The construction Correctness Summary

< □ > < □ > < □ > < □ > < □ > .

2

Why it works

$$\Rightarrow$$
: Let $\sum_{j=1}^{d} s_{i_j} = 0$.
Let $h_j = s_{i_j}$, $1 \le j \le d$ and $h_{d+1} = -1$.
Then

$$h p_{i_j}^j = h \left(rac{1}{s_{i_j}} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}
ight) = s_{i_j} rac{1}{s_{i_j}} - 1 = \mathbf{0},$$

The idea The construction Correctness Summary

< □ > < □ > < □ > < □ > < □ > .

æ

Why it works

$$\Rightarrow$$
: Let $\sum_{j=1}^d s_{i_j} = 0.$
Let $h_j = s_{i_j}, \ 1 \leq j \leq d$ and $h_{d+1} = -1.$

Then

$$hp_{i_j}^j=h\left(rac{1}{s_{i_j}}\cdot\mathbf{e}_j+\mathbf{e}_{d+1}
ight)=s_{i_j}rac{1}{s_{i_j}}-1=0,$$

so *h* halves each P_i , $1 \le i \le d$.

The idea The construction Correctness Summary

・ロン ・四と ・ヨン ・ヨン

æ

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}$, $1 \le j \le d$ and $h_{d+1} = -1$.

Then

$$h p_{i_j}^j = h \left(rac{1}{s_{i_j}} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}
ight) = s_{i_j} rac{1}{s_{i_j}} - 1 = 0,$$

so *h* halves each P_i , $1 \le i \le d$.

Further, as

hq

The idea The construction Correctness Summary

・ロト ・日本 ・モト ・モト

æ

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}$, $1 \le j \le d$ and $h_{d+1} = -1$.

Then

$$h p_{i_j}^j = h \left(rac{1}{s_{i_j}} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}
ight) = s_{i_j} rac{1}{s_{i_j}} - 1 = 0,$$

so *h* halves each P_i , $1 \le i \le d$.

Further, as

$$hq = h \sum_{i=1}^{d} \mathbf{e}_i$$

The idea The construction Correctness Summary

< □ > < □ > < □ > < □ > < □ > .

æ

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}$, $1 \le j \le d$ and $h_{d+1} = -1$.

Then

$$hp_{i_j}^j=h\left(rac{1}{s_{i_j}}\cdot\mathbf{e}_j+\mathbf{e}_{d+1}
ight)=s_{i_j}rac{1}{s_{i_j}}-1=0,$$

so *h* halves each P_i , $1 \le i \le d$.

Further, as

$$hq = h\sum_{i=1}^{d} \mathbf{e}_i = \sum_{j=1}^{d} s_{i_j}$$

The idea The construction Correctness Summary

Why it works

$$\Rightarrow: \text{Let } \sum_{j=1}^{d} s_{i_j} = 0.$$

Let $h_j = s_{i_j}$, $1 \le j \le d$ and $h_{d+1} = -1$.

Then

$$h p_{i_j}^j = h \left(rac{1}{s_{i_j}} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}
ight) = s_{i_j} rac{1}{s_{i_j}} - 1 = 0,$$

so *h* halves each P_i , $1 \le i \le d$.

Further, as

$$hq = h\sum_{i=1}^{d} \mathbf{e}_i = \sum_{j=1}^{d} s_{i_j} = \mathbf{0}$$

イロン イヨン イヨン イヨン

æ

q also lies on h.

The idea The construction Correctness Summary

< □ > < □ > < □ > < □ > < □ > .

2

Why it works

 \Leftarrow : Let *h* be a linear cut.

The idea The construction Correctness Summary

Why it works

- \Leftarrow : Let *h* be a linear cut.
- Fact: h contains exactly one point from each P_i
 - (in particular, $h_{d+1} \neq 0$)

イロト イヨト イヨト イヨト

æ

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

イロン イヨン イヨン イヨン

æ

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

・ロン ・回と ・ヨン・

2

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{i_j}$ for some i_j .

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

イロト イヨト イヨト イヨト

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{i_j}$ for some i_j .

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

イロト イヨト イヨト イヨト

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{i_j}$ for some i_j .

Further, as q lies on h, we have

0

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

イロト イヨト イヨト イヨト

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{i_j}$ for some i_j .

$$0 = hq$$

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

イロト イヨト イヨト イヨト

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{i_j}$ for some i_j .

$$0 = hq = h\sum_{i=1}^{d} \mathbf{e}_i$$

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

イロト イヨト イヨト イヨト

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{i_j}$ for some i_j .

$$0 = hq = h\sum_{i=1}^{d} \mathbf{e}_i = \sum_{j=1}^{d} h_j$$

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

- 4 回 2 - 4 □ 2 - 4 □

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$ and wlog $h_{d+1} = -1$, thus $h_i = s_i$ for some i_i .

$$0 = hq = h \sum_{i=1}^{d} \mathbf{e}_i = \sum_{j=1}^{d} h_j = \sum_{j=1}^{d} s_{ij}$$

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

イロト イヨト イヨト イヨト

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$ and wlog $h_{d+1} = -1$, thus $h_i = s_i$ for some i_i .

Further, as q lies on h, we have

$$0 = hq = h \sum_{i=1}^{d} \mathbf{e}_i = \sum_{j=1}^{d} h_j = \sum_{j=1}^{d} s_{ij}$$

and thus d numbers sum up to 0.

The idea The construction Correctness Summary

Why it works

 \Leftarrow : Let *h* be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot \mathbf{e}_j + \mathbf{e}_{d+1}$ and wlog $h_{d+1} = -1$, thus $h_i = s_i$ for some i_i .

Further, as q lies on h, we have

$$0 = hq = h \sum_{i=1}^{d} \mathbf{e}_i = \sum_{j=1}^{d} h_j = \sum_{j=1}^{d} s_{ij}$$

and thus d numbers sum up to 0.

The idea The construction Correctness Summary

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

What we have done

 $S = \{s_1, \ldots, s_n\}$ is a *d*-SUM instance

The idea The construction Correctness Summary

< □ > < □ > < □ > < □ > < □ > .

æ

What we have done

$$S = \{s_1, \dots, s_n\}$$
 is a *d*-SUM instance
 \Leftrightarrow
 P_1, \dots, P_{d+1} can be bisected by a linear cut

The idea The construction Correctness Summary

æ

What we have done

$$S = \{s_1, \dots, s_n\}$$
 is a d -SUM instance
 \Leftrightarrow
 P_1, \dots, P_{d+1} can be bisected by a linear cut

• ptime-reduction \Rightarrow NP-hard

The idea The construction Correctness Summary

・ロト ・回ト ・ヨト ・ヨト

æ

What we have done

$$S = \{s_1, \dots, s_n\}$$
 is a *d*-SUM instance
 \Leftrightarrow
 P_1, \dots, P_{d+1} can be bisected by a linear cut

- ptime-reduction \Rightarrow NP-hard
- fpt-reduction \Rightarrow W[1]-hard

The idea The construction Correctness Summary

イロン イヨン イヨン イヨン

æ

What we have done

$$S = \{s_1, \dots, s_n\}$$
 is a *d*-SUM instance
 \Leftrightarrow
 P_1, \dots, P_{d+1} can be bisected by a linear cut

- ptime-reduction \Rightarrow NP-hard
- fpt-reduction \Rightarrow W[1]-hard
- linear parameter $\Rightarrow n^{\Omega(d)}$ (conditional) lower bound

The idea The construction Correctness Summary

イロン イヨン イヨン イヨン

æ

What we have done

$$S = \{s_1, \dots, s_n\}$$
 is a *d*-SUM instance
 \Leftrightarrow
 P_1, \dots, P_{d+1} can be bisected by a linear cut

- ptime-reduction \Rightarrow NP-hard
- fpt-reduction \Rightarrow W[1]-hard
- linear parameter $\Rightarrow n^{\Omega(d)}$ (conditional) lower bound

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

Christian Knauer, Hans Raj Tiwary, Daniel Werner Ham-Sandwich cuts

・ロト ・回ト ・ヨト ・ヨト

Э

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

Carathéodory sets

イロン イヨン イヨン イヨン

æ

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

- Carathéodory sets
- Helly sets (via duality)

- < ≣ →

æ

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

- Carathéodory sets
- Helly sets (via duality)
- ▶ more specific: Minimum Infeasible Subsystem for LP

A (1) > (1) > (1)

∃ >