On the computational complexity of Ham-Sandwich cuts, Helly sets and related problems

Christian Knauer (U Bayreuth)
 Hans Raj Tiwary (UL Bruxelles)
 Daniel Werner (FU Berlin)

March 12, 2011
BasicsThe Ham-Sandwich TheoremOur resultsd-Sum
d-Ham-Sandwich
The idea
The construction
Correctness
Summary

Further results

The planar case

Let $P=R \cup B$. Then there is a line that bisects both sets simultaneously.

The planar case

Let $P=R \cup B$. Then there is a line that bisects both sets simultaneously.

Such a line can be found in linear time!
[Edelsbrunner, Waupotitsch; '86]

General version

Theorem
For every d point sets in \mathbb{R}^{d} there exists a hyperplane that bisects them simultaneously.

General version

Theorem
For every d point sets in \mathbb{R}^{d} there exists a hyperplane that bisects them simultaneously.
Proof: Borsuk-Ulam

General version

Theorem

For every d point sets in \mathbb{R}^{d} there exists a hyperplane that bisects them simultaneously.
Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: n^{d+1}

General version

Theorem

For every d point sets in \mathbb{R}^{d} there exists a hyperplane that bisects them simultaneously.
Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: n^{d+1}
- best known: $O\left(n^{d-1}\right)$ [Lo, Matoušek, Steiger; '92]

General version

Theorem

For every d point sets in \mathbb{R}^{d} there exists a hyperplane that bisects them simultaneously.
Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: n^{d+1}
- best known: $O\left(n^{d-1}\right)$ [Lo, Matoušek, Steiger; '92]
- recently: $O\left(n \log ^{d} n\right)$ for well separated point sets [Bárány, Hubard, Jéronimo; '08], [Steiger, Zhao; '09]

The decision problem

Can we find a cut incrementally?

The decision problem

Can we find a cut incrementally?
(d-HAM-SANDWICH)
Given: Sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d}

The decision problem

Can we find a cut incrementally?
(d-Ham-SANDWICH)
Given: Sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d}
Question: Is there a ham-sandwich cut through the origin?

The decision problem

Can we find a cut incrementally?
(d-HAM-SANDWICH)
Given: Sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d}
Question: Is there a ham-sandwich cut through the origin?
Alternatively:
Given: Sets P_{1}, \ldots, P_{d+1} in \mathbb{R}^{d}
Question: Is there a ham-sandwich cut?

The decision problem

Can we find a cut incrementally?
(d-Ham-SANDWICH)
Given: Sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d}
Question: Is there a ham-sandwich cut through the origin?
Alternatively:
Given: Sets P_{1}, \ldots, P_{d+1} in \mathbb{R}^{d}
Question: Is there a ham-sandwich cut?
No complexity results known so far.

Our results

If the dimension is part of the input, d-Ham-SANDWICH is

Our results

If the dimension is part of the input, d-Ham-Sandwich is

- NP-hard (does not exclude $O(n)$ for every fixed dimension)

Our results

If the dimension is part of the input, d-Ham-Sandwich is

- NP-hard (does not exclude $O(n)$ for every fixed dimension)
- W[1]-hard when parameterized with the dimension

Our results

If the dimension is part of the input, d-Ham-Sandwich is

- NP-hard (does not exclude $O(n)$ for every fixed dimension)
- W[1]-hard when parameterized with the dimension
- requires $n^{\Omega(d)}$ time, unless 3-SAT can be solved in $2^{o(n)}$

The d-SUM problem

(d-Sum)
Given: A set of integers $S=\left\{s_{1}, \ldots, s_{n}\right\}$.

The d-SUM problem

(d-Sum)
Given: A set of integers $S=\left\{s_{1}, \ldots, s_{n}\right\}$. Question: Do d of them sum up to 0 ?

The d-SUM problem

(d-Sum)
Given: A set of integers $S=\left\{s_{1}, \ldots, s_{n}\right\}$. Question: Do d of them sum up to 0 ?

- parameterized version of Subset-Sum

The d-SUM problem

(d-Sum)
Given: A set of integers $S=\left\{s_{1}, \ldots, s_{n}\right\}$. Question: Do d of them sum up to 0 ?

- parameterized version of Subset-Sum
- W[1]-hard [Fellows, Koblitz; '93]

The d-Sum problem

(d-Sum)
Given: A set of integers $S=\left\{s_{1}, \ldots, s_{n}\right\}$.
Question: Do d of them sum up to 0 ?

- parameterized version of SubSET-Sum
- W[1]-hard [Fellows, Koblitz; '93]
- requires $n^{\Omega(d)}$ time, unless 3 -SAT can be solved in $2^{\circ(n)}$ [Pǎtrașcu, Williams; '10]

The idea

Reduction from d-Sum

The idea

Reduction from d-Sum
General idea: Embed the numbers as points into $\mathbb{R}^{f(d)}$ that have a certain property iff there are d numbers that sum up to 0 .

The idea

Reduction from d-Sum
General idea: Embed the numbers as points into $\mathbb{R}^{f(d)}$ that have a certain property iff there are d numbers that sum up to 0 .

Here: Construct point sets P_{1}, \ldots, P_{d+1} in \mathbb{R}^{d+1} such that

The idea

Reduction from d-Sum
General idea: Embed the numbers as points into $\mathbb{R}^{f(d)}$ that have a certain property iff there are d numbers that sum up to 0 .

Here: Construct point sets P_{1}, \ldots, P_{d+1} in \mathbb{R}^{d+1} such that

$$
\begin{aligned}
& \text { there exists a linear ham-sandwich cut } \\
& \qquad \Leftrightarrow \\
& d \text { of the numbers sum up to } 0 .
\end{aligned}
$$

Encoding the numbers

Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$

Encoding the numbers

$$
\text { Let } S=\left\{s_{1}, \ldots, s_{n}\right\}
$$

Goal: Construct d sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d+1} from S
(and one extra set later)

Encoding the numbers

$$
\text { Let } S=\left\{s_{1}, \ldots, s_{n}\right\}
$$

Goal: Construct d sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d+1} from S
(and one extra set later)
such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.

Encoding the numbers

$$
\text { Let } S=\left\{s_{1}, \ldots, s_{n}\right\}
$$

Goal: Construct d sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d+1} from S
(and one extra set later)
such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.

In dimension $j:$ add point $p_{i}^{j}:=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ for $1 \leq i \leq n$

Encoding the numbers

$$
\text { Let } S=\left\{s_{1}, \ldots, s_{n}\right\}
$$

Goal: Construct d sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d+1} from S (and one extra set later)
such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.

In dimension $j:$ add point $p_{i}^{j}:=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ for $1 \leq i \leq n$

Encoding the numbers

$$
\text { Let } S=\left\{s_{1}, \ldots, s_{n}\right\}
$$

Goal: Construct d sets P_{1}, \ldots, P_{d} in \mathbb{R}^{d+1} from S (and one extra set later)
such that number appears in solution \Leftrightarrow linear cut goes through corresponding point.
In dimension j : add point $p_{i}^{j}:=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ for $1 \leq i \leq n$

Observe: if $h \cdot p_{i}^{j}=0$ then $h_{j}=-h_{d+1} s_{i}$.

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

\Rightarrow add balancing points

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

\Rightarrow add balancing points

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

\Rightarrow add balancing points

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

\Rightarrow add balancing points

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

\Rightarrow add balancing points

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

\Rightarrow add balancing points

Balancing points

Problem: Hyperplane through origin will not bisect the sets:

\Rightarrow add balancing points

The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut

The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut
- if points lie on linear cut \Rightarrow corresponding numbers sum to 0

The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut
- if points lie on linear cut \Rightarrow corresponding numbers sum to 0

Set

$$
q=-\sum_{i=1}^{d} \mathbf{e}_{i}
$$

and $P_{d+1}=\{q\}$.

Some facts

Every linear cut

- must contain q

Some facts

Every linear cut

- must contain q
- contains exactly one point from each P_{i}

Some facts

Every linear cut

- must contain q
- contains exactly one point from each P_{i}
- contains none of the balancing points

Why it works

Claim:
There are d numbers that sum to 0 . \Leftrightarrow

There is a linear ham-sandwich cut.

Correctness

Summary

Why it works

\Rightarrow Let $\sum_{j=1}^{d} s_{i_{j}}=0$.

Why it works

$$
\Rightarrow: \text { Let } \sum_{j=1}^{d} s_{i_{j}}=0
$$

Let $h_{j}=s_{i_{j}}, 1 \leq j \leq d$

Why it works

\Rightarrow : Let $\sum_{j=1}^{d} s_{i_{j}}=0$.
Let $h_{j}=s_{i_{j}}, 1 \leq j \leq d$ and $h_{d+1}=-1$.

Why it works

\Rightarrow : Let $\sum_{j=1}^{d} s_{i_{j}}=0$.
Let $h_{j}=s_{i_{j}}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then
$h p_{i_{j}}^{j}$

Why it works

\Rightarrow Let $\sum_{j=1}^{d} s_{j j}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i j}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)
$$

Why it works

\Rightarrow Let $\sum_{j=1}^{d} s_{j j}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i j}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)=s_{i_{j}} \frac{1}{s_{i j}}-1
$$

Why it works

\Rightarrow Let $\sum_{j=1}^{d} s_{j j}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i j}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)=s_{i j} \frac{1}{s_{i j}}-1=0,
$$

Why it works

\Rightarrow : Let $\sum_{j=1}^{d} s_{i_{j}}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i_{j}}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)=s_{i_{j}} \frac{1}{s_{i_{j}}}-1=0,
$$

so h halves each $P_{i}, 1 \leq i \leq d$.

Why it works

\Rightarrow : Let $\sum_{j=1}^{d} s_{i_{j}}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i_{j}}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)=s_{i_{j}} \frac{1}{s_{i_{j}}}-1=0,
$$

so h halves each $P_{i}, 1 \leq i \leq d$.
Further, as

$$
h q
$$

Why it works

\Rightarrow : Let $\sum_{j=1}^{d} s_{i_{j}}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i_{j}}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)=s_{i_{j}} \frac{1}{s_{i_{j}}}-1=0,
$$

so h halves each $P_{i}, 1 \leq i \leq d$.
Further, as

$$
h q=h \sum_{i=1}^{d} \mathbf{e}_{i}
$$

Why it works

\Rightarrow : Let $\sum_{j=1}^{d} s_{i_{j}}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i_{j}}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)=s_{i_{j}} \frac{1}{s_{i_{j}}}-1=0,
$$

so h halves each $P_{i}, 1 \leq i \leq d$.
Further, as

$$
h q=h \sum_{i=1}^{d} \mathbf{e}_{i}=\sum_{j=1}^{d} s_{i j}
$$

Why it works

\Rightarrow : Let $\sum_{j=1}^{d} s_{i_{j}}=0$.
Let $h_{j}=s_{i j}, 1 \leq j \leq d$ and $h_{d+1}=-1$.
Then

$$
h p_{i_{j}}^{j}=h\left(\frac{1}{s_{i j}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}\right)=s_{i_{j}} \frac{1}{s_{i_{j}}}-1=0,
$$

so h halves each $P_{i}, 1 \leq i \leq d$.
Further, as

$$
h q=h \sum_{i=1}^{d} \mathbf{e}_{i}=\sum_{j=1}^{d} s_{i j}=0
$$

q also lies on h.

Why it works

\Leftarrow : Let h be a linear cut.

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}
(in particular, $h_{d+1} \neq 0$)

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and $w \log h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

0

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

$$
0=h q
$$

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

$$
0=h q=h \sum_{i=1}^{d} \mathbf{e}_{i}
$$

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

$$
0=h q=h \sum_{i=1}^{d} \mathbf{e}_{i}=\sum_{j=1}^{d} h_{j}
$$

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}

$$
\text { (in particular, } h_{d+1} \neq 0 \text {) }
$$

Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

$$
0=h q=h \sum_{i=1}^{d} \mathbf{e}_{i}=\sum_{j=1}^{d} h_{j}=\sum_{j=1}^{d} s_{i_{j}}
$$

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}
(in particular, $h_{d+1} \neq 0$)
Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

$$
0=h q=h \sum_{i=1}^{d} \mathbf{e}_{i}=\sum_{j=1}^{d} h_{j}=\sum_{j=1}^{d} s_{i_{j}}
$$

and thus d numbers sum up to 0 .

Why it works

\Leftarrow : Let h be a linear cut.
Fact: h contains exactly one point from each P_{i}
(in particular, $h_{d+1} \neq 0$)
Fact: each must be a point of the form $p_{i}^{j}=\frac{1}{s_{i}} \cdot \mathbf{e}_{j}+\mathbf{e}_{d+1}$ and wlog $h_{d+1}=-1$, thus $h_{j}=s_{i j}$ for some i_{j}.

Further, as q lies on h, we have

$$
0=h q=h \sum_{i=1}^{d} \mathbf{e}_{i}=\sum_{j=1}^{d} h_{j}=\sum_{j=1}^{d} s_{i_{j}}
$$

and thus d numbers sum up to 0 .

What we have done

$$
S=\left\{s_{1}, \ldots, s_{n}\right\} \text { is a } d \text {-Sum instance }
$$

What we have done

$$
\begin{gathered}
S=\left\{s_{1}, \ldots, s_{n}\right\} \text { is a } d \text {-SUM instance } \\
\Leftrightarrow \\
P_{1}, \ldots, P_{d+1} \text { can be bisected by a linear cut }
\end{gathered}
$$

What we have done

$$
\begin{gathered}
S=\left\{s_{1}, \ldots, s_{n}\right\} \text { is a } d \text {-SUM instance } \\
\Leftrightarrow \\
P_{1}, \ldots, P_{d+1} \text { can be bisected by a linear cut }
\end{gathered}
$$

- ptime-reduction \Rightarrow NP-hard

What we have done

$$
\begin{gathered}
S=\left\{s_{1}, \ldots, s_{n}\right\} \text { is a } d \text {-SUM instance } \\
\Leftrightarrow \\
P_{1}, \ldots, P_{d+1} \text { can be bisected by a linear cut }
\end{gathered}
$$

- ptime-reduction \Rightarrow NP-hard
- fpt-reduction $\Rightarrow \mathrm{W}[1]$-hard

What we have done

$$
S=\left\{s_{1}, \ldots, s_{n}\right\} \text { is a } d \text {-Sum instance }
$$

$$
\Leftrightarrow
$$

P_{1}, \ldots, P_{d+1} can be bisected by a linear cut

- ptime-reduction \Rightarrow NP-hard
- fpt-reduction $\Rightarrow \mathrm{W}[1]$-hard
- linear parameter $\Rightarrow n^{\Omega(d)}$ (conditional) lower bound

What we have done

$$
S=\left\{s_{1}, \ldots, s_{n}\right\} \text { is a } d \text {-Sum instance }
$$

$$
\Leftrightarrow
$$

P_{1}, \ldots, P_{d+1} can be bisected by a linear cut

- ptime-reduction \Rightarrow NP-hard
- fpt-reduction $\Rightarrow \mathrm{W}[1]$-hard
- linear parameter $\Rightarrow n^{\Omega(d)}$ (conditional) lower bound

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for - Carathéodory sets

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

- Carathéodory sets
- Helly sets (via duality)

Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

- Carathéodory sets
- Helly sets (via duality)
- more specific: Minimum Infeasible Subsystem for LP

