A Proof of the Oja-depth Conjecture in the Plane

Nabil H. Mustafa* ${ }^{*} \quad$ Hans Raj Tiwary ${ }^{\dagger} \quad$ Daniel Werner ${ }^{\ddagger}$

Abstract

Given a set P of n points in the plane, the $O j a$-depth of a point $x \in \mathbb{R}^{2}$ is defined to be the sum of the areas of all triangles defined by x and two points from P, normalized by the area of convex-hull of P. The Ojadepth of P is the minimum Oja-depth of any point in \mathbb{R}^{2}. The Oja-depth conjecture states that any set P of n points in the plane has Oja-depth at most $n^{2} / 9$ (this would be optimal as there are examples where it is not possible to do better). We present a proof of this conjecture.

We also improve the previously best bounds for all $\mathbb{R}^{d}, d \geq 3$, via a different, more combinatorial technique.

1 Introduction

We first present some examples of the several different versions of data-depth that have been studied.

The location-depth of a point x is the minimum number of points of P lying in any halfspace containing $x[11,20,19]$. The Center-point Theorem [9] asserts that there is always a point of location-depth at least $n /(d+1)$, and that this is the best possible. The point with the highest location-depth w.r.t. to a point-set P is called the Tukey-median of P. The corresponding computational question of finding the Tukey-median of a point-set has been studied extensively, and an optimal algorithm with running time $O(n \log n)$ is known in $\mathbb{R}^{2}[7]$.

The simplicial-depth [13] of a point x and a set P is the number of simplices spanned by P that contain x. The First Selection Lemma [14] asserts that there always exists a point with simplicial-depth at least $c_{d} \cdot n^{d+1}$, where $c>0$ is a constant depending only d. The optimal value of c_{d} is known only for $d=2$, where $c_{2}=1 / 27$ [5]. For c_{3} is still open, though it has been the subject of a flurry of work recently $[3,6,10]$. The current-best algorithm computes the point with maximum simplicial-depth in time $O\left(n^{4} \log n\right)$ [1].

[^0]The L_{1} depth, proposed by Weber in 1909, is defined to be the sum of the distances of x to the n input points. It is known that the point with the lowest such depth is unique in \mathbb{R}^{2}.

Oja-depth. In this paper, we study another wellknown measure called the Oja depth of a point-set. Given a set P of n points in \mathbb{R}^{d}, the Oja-depth (first proposed by Oja [16] in 1983) of a point $x \in \mathbb{R}^{d}$ w.r.t. P is defined to be the sum of the volumes of all d-simplices spanned by x and d other points of P. Formally, given a set $Q \subset \mathbb{R}^{d}$, let $\operatorname{conv}(Q)$ denote the convex-hull of Q, and let $\operatorname{vol}(Q)$ denote its d-dimensional volume. Then,

$$
\operatorname{Oja-depth}(x)=\sum_{y_{1}, \ldots, y_{d} \in\binom{P}{d}} \frac{\operatorname{vol}\left(\operatorname{conv}\left(x, y_{1}, \ldots, y_{d}\right)\right)}{\operatorname{vol}(\operatorname{conv}(P))}
$$

The Oja-depth of P is the minimum Oja-depth over all $x \in \mathbb{R}^{d}$. From now onwards, w.l.o.g., assume that $\operatorname{vol}(\operatorname{conv}(P))=1$.

Known bounds. First we note that

$$
\left(\frac{n}{d+1}\right)^{d} \leq \text { Oja-depth }(P) \leq\binom{ n}{d}
$$

For the upper-bound, observe that any d-simplex spanned by points inside the convex-hull of P can have volume at most 1 , and so a trivial upper-bound for Oja-depth of any $P \subset \mathbb{R}^{d}$ is $\binom{n}{d}$, achieved by picking any $x \in \operatorname{conv}(P)$. For the lower-bound, construct P by placing $n /(d+1)$ points at each of the $d+1$ vertices of a unit-volume simplex in \mathbb{R}^{d}.

The conjecture [8] states that this lower bound is tight:

Conjecture 1 Oja-depth $(P) \leq\left(\frac{n}{d+1}\right)^{d}$ for any $P \subset$ \mathbb{R}^{d} of n points.

The current-best upper-bound [8] is that the Ojadepth of any set of n points is at most $\binom{n}{d} /(d+1)$. In particular, for $d=2$, this gives $n^{2} / 6$.

The Oja-depth conjecture states the existence of a low-depth point, but given P, computing the lowestdepth point is also an interesting problem. In \mathbb{R}^{2}, Rousseeuw and Ruts [18] presented a straightforward $O\left(n^{5} \log n\right)$ time algorithm for computing the lowestdepth point, which was improved to the current-best
algorithm with running time $O\left(n \log ^{3} n\right)$ [1]. An approximate algorithm utilizing fast rendering systems on current graphics hardware was presented in $[12,15]$. For general d, various heuristics for computing points with low Oja-depth were given by Ronkainen, Oja and Orponen [17].

Our results. In Section 2, we present our main theorem, which completely resolves the conjecture for the planar case.

Theorem 1 Every set P of n points in \mathbb{R}^{2} has Ojadepth at most $\frac{n^{2}}{9}$. Furthermore, such a point can be computed in $O(n \log n)$ time.

In Section 3, using completely different (and more combinatorial) techniques for higher dimensions, we also prove the following:

Theorem 2 Every set P of n points in $\mathbb{R}^{d}, d \geq 3$, has Oja-depth at most $\frac{2 n^{d}}{2^{d} d!}-\frac{2 d}{(d+1)^{2}(d+1)!}\binom{n}{d}+O\left(n^{d-1}\right)$.
This improves the previously best bounds by an order of magnitude.

2 The optimal bound for the plane

We now come to prove the optimal bound for \mathbb{R}^{2}. First, let us give some basic definitions. The center of mass or centroid of a convex set X is defined as

$$
c(X)=\frac{\int_{x \in X} x d x}{\operatorname{area}(X)}
$$

For a discrete point set P, the center of mass is simply defined as the center of mass of the convex hull of P. When we talk about the centroid of P, we refer to the center of mass of the convex hull and hope the reader does not confuse this with the discrete centroid $\sum p /|P|$. In what follows, we will bound the Oja-depth of the centroid of a set, and show that it is worst-case optimal. Our proof will rely on the following two Lemmas.

Lemma 3 [Winternitz [4]] Every line through the centroid of a convex object has at most $\frac{5}{9}$ of the total area on either side.

Lemma $4[8]$ Let P be a convex object with unit area and let c be its center of mass. Then every simplex inside P which has c as a vertex has area at most $\frac{1}{3}$.

To simplify matters, we will use the following proposition.

Proposition 5 If we project an interior point $p \in P$ radially outwards from the centroid c to the boundary of the convex hull, the Oja-depth of the point c does not decrease.

Proof. First, observe that the center of mass does not change. It suffices to show that every triangle that has p as one of its vertices increases its area. Let $T:=\Delta(c, p, q)$ be any triangle. The area of T is $\frac{1}{2}\|c-p\| \cdot h$, where h is the height of T with respect to $p-c$. If we move p radially outwards to a point p^{\prime}, h does not change, but $\left\|c-p^{\prime}\right\|>\|c-p\|$.

This implies that in order to prove an upper bound, we can assume that all points lie on the convex hull.

From now on, let P be a set of points, and let $c:=c(\operatorname{conv}(P))$ denote its center of mass as defined above. Further, let p_{1}, \ldots, p_{n} denote the points sorted clockwise by angle from c. We define the distance of two points as the difference of their position in this order (modulo n). A triangle that is formed by c and two points at distance i is called an i-triangle, or triangle of type i. Observe that for each $i, 1 \leq i<\lfloor n / 2\rfloor$, there are exactly n triangles of type i. Further, if n is even, then there are $n / 2$ triangles of type $\lfloor n / 2\rfloor$, otherwise there are n. These constitute all possible triangles.

Let $C \subseteq P$, and let \mathcal{C} be they boundary of the convex hull of C. This will be called a cycle. The length of a cycle is simply the number of elements in C. A cycle \mathcal{C} of length i induces i triangles that arise by taking all the triangle formed by an edge in \mathcal{C} and the center of mass $c($ of $\operatorname{conv}(P))$. The area induced by \mathcal{C} is the sum of areas of these i triangles.

The triangles induced by the entire set P form a partition of $\operatorname{conv}(P)$. Thus, Lemma 5 implies the following:

Corollary 6 The total area of all triangles of type 1 is exactly 1.

The following shows that we can generalize this Lemma, i.e., that we can bound the total area induced by any cycle.

Lemma 7 Let \mathcal{C} be a cycle. Then \mathcal{C} induces a total area of at most 1 .

Proof. We distinguish two cases.
Case 1: The centroid lies in the convex hull of \mathcal{C}. In this case, all triangles are disjoint, so the area is at most 1. See Fig. 1(a).

Case 2: The centroid does not lie in the convex hull of \mathcal{C}. By the Separation Theorem [14], there is a line through c that contains all the triangles. Then we can remove one triangle to get a set of disjoint triangles, namely the one induced by the pair $\left\{p_{i_{j}}, p_{i_{j+1}}\right\}$ that has c on the left side. By Lemma 3, the area of the remaining triangles can thus be at most $5 / 9$. By Lemma 4, the removed triangle has an area of at most $1 / 3$. Thus, the total area is at most $8 / 9$. See Fig. 1(b). Here, the gray triangle can be removed to get a set of disjoint triangles.

Figure 1: The two cases

We now prove the crucial lemma, which is a general version of Corollary 6.

Lemma 8 The total area of all triangles of type i is at most i.

Proof. We will proceed as follows: For fixed i, we will create n cycles. Each cycle will consist of one triangle of type i, and $n-i$ triangles of type 1 , multiplicities counted. We then determine the total area of these cycles and subtract the area of all 1-triangles. This will give the desired result.

Let p_{1}, \ldots, p_{n} be the points ordered by angles from the centroid c. Let \mathcal{C}_{j} be the cycle consisting of the $n-i+1$ points $P-\left\{p_{i+1} \bmod n, \ldots, p_{i+j-1} \bmod n\right\}$. This is a cycle that consists of one triangle of type i, namely the one starting a p_{j}, and $n-i$ triangles of type 1.

By Lemma 7 , every cycle \mathcal{C}_{j} induces an area of at most 1. If we sum up the areas of all n cycles \mathcal{C}_{j}, $1 \leq j \leq n$, we thus get an area of at most n.

We now determine how often we have counted each triangle. Each i-triangle is counted exactly once. Further, for every cycle we count $n-i$ triangles of type 1. For reasons of symmetry, each 1-triangle is counted equally often. Thus, each is counted exactly $n-i$ times over all the cycles. By Corollary 6, their area is exactly $n-i$, which we can subtract from n to get the total area of the i-triangles:

$$
\begin{aligned}
\sum_{i-\Delta T} \operatorname{area}(T) & \leq n-\left(\sum_{1-\Delta T}(n-i) \operatorname{area}(T)\right) \\
& =n-(n-i)=i
\end{aligned}
$$

This completes the proof.
Theorem 9 Let P be any set of points in the plane and c be the centroid of its convex hull. Then the Oja-depth of c is at most $\frac{n^{2}}{9}$.

Proof. We will bound the area of the triangles depending on their type. For i-triangles with $1 \leq i \leq$ $\lfloor n / 3\rfloor$, we will use Lemma 8. For i-triangles with
$\lfloor n / 3\rfloor<i \leq\lfloor n / 2\rfloor$, this would give us a bound worse than $n / 3$, so we will use Lemma 4 for each of these.

By Lemma 8, the sum of the areas of all triangles of type at most $\lfloor n / 3\rfloor$ is at most

$$
\sum_{i=1}^{\lfloor n / 3\rfloor} i=\frac{\lfloor n / 3\rfloor(\lfloor n / 3\rfloor+1)}{2} \leq \frac{n^{2}}{18}+\frac{1}{2}\lfloor n / 3\rfloor .
$$

For the remaining triangles, we use Lemma 4 to bound the size of each by $1 / 3$. Thus, in total we get

$$
\operatorname{Oja-depth}(P) \leq \frac{n^{2}}{18}+\frac{n(\lfloor n / 2\rfloor-\lfloor n / 3\rfloor)}{3}+\frac{n}{6}
$$

By a simple case distinction, it is easy to see that the lower order term disappears. This finishes the proof.

3 Higher Dimensions

We now present improved bounds for the Oja-depth problem in dimensions greater than two. Before the main theorem, we need the following two lemmas.

Lemma 10 Let P be a set of n points in \mathbb{R}^{d}. Let $q \in \mathbb{R}^{d}$. Then any line l through q intersects at most $f(n, d)(d-1)$-simplices spanned by P, where $f(n, d)=\frac{2 n^{d}}{2^{d} d!}+O\left(n^{d-1}\right)$.

Proof. Project P onto the hyperplane H orthogonal to l to get the point-set P^{\prime} in \mathbb{R}^{d-1}. The line l becomes a point on H, say point p_{l}. Then l intersects the ($d-1$)-simplex spanned by $\left\{p_{1}, \ldots, p_{d}\right\}$ if and only if the convex hull of the corresponding points in P^{\prime} contain the point p_{l}.

By a result of Barany [2], any point in \mathbb{R}^{d} is contained in at most

$$
\frac{2(n-d)}{n+d+2}\binom{(n+d+2) / 2}{d+1}+O\left(n^{d}\right)
$$

simplices induced by a point set.
Applying this lemma to P^{\prime} in \mathbb{R}^{d-1} and simplifying the expression, we get the desired result.

Lemma 11 Given any set P of n points in \mathbb{R}^{d}, there exists a point q such that any half-infinite ray from q intersects at least $\frac{2 d}{(d+1)^{2}(d+1)!}\binom{n}{d}(d-1)$-simplices spanned by P.

Proof. Gromov [10] showed that, given any set P, there exists a point q contained in at least $\frac{2 d}{(d+1)(d+1)!}\binom{n}{d+1}$ simplices spanned by P. Now any half-infinite ray from q must intersect exactly one $(d-1)$-dimensional face (which is a $(d-1)$-simplex) of each d-simplex containing q, and each such ($d-1$)simplex can be counted at most $n-d$ times.

Theorem 12 Given any set P of n points in \mathbb{R}^{d}, there exists a point q with Oja-depth at most

$$
B:=\frac{2 n^{d}}{2^{d} d!}-\frac{2 d}{(d+1)^{2}(d+1)!}\binom{n}{d}+O\left(n^{d-1}\right)
$$

Proof. Let q be the point from Lemma 11. Let $w(r)$ denote the number of simplices spanned by q and d points from P that contain r. In what follows, we will give a bound on $w(r)$, and thus on the Oja-depth of q.

If r is contained in a simplex, then any half-infinite ray $\overrightarrow{q r}$ intersects a ($d-1$)-facet of that simplex. Therefore, $w(r)$ is upper-bounded by the number of $(d-1)$ simplices spanned by P that are intersected by the ray \vec{q}.

To upper-bound this, note that the ray starting from q but in the opposite direction to the ray $\overrightarrow{q r}$, intersects at least $\frac{2 d}{(d+1)^{2}(d+1)!}\binom{n}{d}(d-1)$-simplices (by Lemma 11). On the other hand, by Lemma 10, the entire line passing through q and r intersects at most $\frac{2 n^{d}}{2^{d} d!}+O\left(n^{d-1}\right)(d-1)$-simplices. These two together imply that the ray $\overrightarrow{q r}$ intersects at most $B(d-1)$ simplices, and this is also an upper-bound on $w(r)$. Finally, we have

$$
\begin{aligned}
\operatorname{Oja-depth}(q, P) & =\int_{\operatorname{conv}(P)} w(x) d x \\
& \leq \int_{\operatorname{conv}(P)} B d x=B
\end{aligned}
$$

finishing the proof.

Acknowledgments. This research was done during the DCG Special Semester in Lausanne. We thank the EPFL and the organizers János Pach and Emo Welzl.

References

[1] G. Aloupis. On computing geometric estimators of location, 2001. M.Sc. Thesis, McGill University.
[2] I. Barany. A generalization of caratheodory's theorem. Discrete Mathematics, 40:141-152, 1982.
[3] A. Basit, N. H. Mustafa, S. Ray, and S. Raza. Hitting simplices with points in 3d. Discrete \mathcal{E}° Computational Geometry, 44(3):637-644, 2010.
[4] W. Blaschke. Vorlesungen uber Differentialgeometrie. II, Affine Differentialgeometrie. Springer, 1923.
[5] E. Boros and Z. Furedi. The maximal number of covers by the triangles of a given vertex set on the plane. Geom. Dedicata, 17:69-77, 1984.
[6] B. Bukh, J. Matousek, and G. Nivasch. Stabbing simplices by points and flats. Discrete \mathcal{E} Computational Geometry, 43(2):321-338, 2010.
[7] T. M. Chan. An optimal randomized algorithm for maximum tukey depth. In SODA, pages 430436, 2004.
[8] D. Chen, O. Devillers, J. Iacono, S. Langerman, and P. Morin. Oja Medians and Centers of Mass. In Proceedings of the 22nd $C C C G$, pages 147150, 2010.
[9] J. Eckhoff. Helly, Radon and Carathéodory type theorems. In Handbook of Convex Geometry, pages 389-448. North-Holland, 1993.
[10] M. Gromov. Singularities, expanders and topology of maps. part 2: From combinatorics to topology via algebraic isoperimetry. Geometric and Functional Analysis, 20:416-526, 2010.
[11] J. Hodges. A bivariate sign test. Annals of Mathematical Statistics, 26:523-527, 1955.
[12] S. Krishnan, N. Mustafa, and S. Venkatasubramanian. Statistical data depth and the graphics hardware. In Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, pages 223-250. DIMACS Series, 2006.
[13] R. Liu. A notion of data depth based upon random simplices. The Annals of Statistics, 18:405414, 1990.
[14] J. Matoušek. Lectures in Discrete Geometry. Springer-Verlag, New York, NY, 2002.
[15] N. H. Mustafa. Simplification, Estimation and Classification of Geometric Objects. PhD thesis, Duke University, Durham, North Carolina, 2004.
[16] H. Oja. Descriptive statistics for multivariate distributions. Statistics and Probability Letters, 1:327-332, 1983.
[17] T. Ronkainen, H. Oja, and P. Orponen. Computation of the multivariate oja median. In R. Dutter and P. Filzmoser. International Conference on Robust Statistics, 2003.
[18] P. Rousseeuw and I. Ruts. Bivariate location depth. Applied Statistics, 45:516-526, 1996.
[19] P. J. Rousseeuw, I. Ruts, and J. W. Tukey. The bagplot: A bivariate boxplot. The American Statistician, 53(4):382-387, 1999.
[20] J. Tukey. Mathematics and the picturing of data. In Proc. of the international congress of mathematicians, pages 523-531, 1975.

[^0]: *Dept. of Computer Science, LUMS, Pakistan. nabil@lums.edu.pk
 †Département de Mathématique, Université Libre de Bruxelles, Belgium, hans.raj.tiwary@ulb.ac.be
 \ddagger Institut für Informatik, Freie Univ. Berlin, Germany. daniel.werner@fu-berlin.de - This research was funded by Deutsche Forschungsgemeinschaft within the Research Training Group (Graduiertenkolleg) "Methods for Discrete Structures"

