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Abstract. NOTE: Unfortunately, most of the results mentioned here
were already known under the name of ”d-separated interval piercing”.
The result that Td(m) exists was first proved by Gyárfás and Lehel in
1970, see [5]. Later, the result was strengthened by Károlyi and Tardos
[9] to match our result. Moreover, their proof (in a different notation,
of course) uses ideas very similar to ours and leads to a similar recur-
rence. Also, our conjecture turns out to be right and was proved for
the 2-dimensional case by Tardos and for the general case by Kaiser [8].
An excellent survey article (”Transversals of d-intervals”) is available on
http://www.renyi.hu/~tardos.
Still, because of all the work we put into this, we leave the paper available
to the public on http://page.mi.fu-berlin.de/dawerner, also because
one might find the references useful.

We study the following Gallai-type problem: Assume that we are given
a family X of convex objects in Rd such that among any subset of size
m, there is an axis-parallel hyperplane intersecting at least two of the
objects. What can we say about the number of axis-parallel hyperplanes
that sufficient to intersect all sets in the family?
In this paper, we show that this number Td(m) exists, i.e., depends only
on m and the dimension d, but not on the size of the set X. First,
we derive a very weak super-exponential bound. Using this result, by a
simple proof we are able to show that this number is even polynomially
bounded for any fixed d.
We partly answer open problem 74 on [2], where the planar case is con-
sidered, by improving the best known exponential bound to O(m2).
Keywords: combinatorial geometry, rectangle slicing, independent set, up-
per bounds, transversal

1 Introduction

Let X and H be two sets of objects in Rd. An h ∈ H is said to be a
transversal of X, if it intersects each x ∈ X. Investigating the conditions
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under which certain sets have a transversal has been an intensive field of
research. An example is the well-known Helly Theorem [7], which states
that whenever for a set of convex objects in Rd every d+1 have a nonempty
intersection, then they all have a nonempty intersection. Here, X is simply
a set of convex objects, and H is the set of all points.

If the given set does not allow a transversal with a single point, one
can ask whether there are k points such that their union intersects each
set in X. If such a set of k points exists, we say that X is k-pierceable
and call k the piercing number of X.

A famous theorem of this type proved by Alon and Kleitman [1] is
the following generalization of Helly’s Theorem (for p = q = d+ 1):

Theorem (Alon-Kleitman). Let X be a finite family of convex sets in
Rd. Let p ≥ q > d be integers such that among any p sets of X there are q
sets with a common point. Then X is pierceable with HDd(p, q) points.3

The crucial part is that this number depends only on p, q, and d, but not
on the size of X. See, e.g., Wenger [12] or Matoušek [10, Ch. 10] for a
gentler introduction.

In this paper, we will derive a similar result for a different class H of
objects, namely axis-parallel hyperplanes, i.e., planes of the form h : xi =
c, 1 ≤ i ≤ d, c ∈ R. Analogously to the above notion, we say that a set
X of objects is k-sliceable, if there are k axis-parallel hyperplanes whose
union intersects each x ∈ X. By replacing each object by its bounding
box, it suffices to talk about hyperrectangles (”boxes”) of course.

Theorem 1. Let X be a finite family of convex sets in Rd. Let m > n
be integers such that any set of size m can be sliced by n axis-parallel hy-
perplanes. Then X can be sliced by Td(m) <∞ axis-parallel hyperplanes.

This can also be stated in a slightly different way. Thereto, let graph
GX = (V,E) be the graph with V = X and (x, y) ∈ E if and only if there
is an axis-parallel hyperplane that intersects both objects.

Corollary 1. Let X be a finite family of convex sets in Rd. If GX does
not have an independent set of size m, then X can be sliced by Td(m) <∞
axis-parallel hyperplanes.

Until now, existence of this function was only known for d = 1, 2 (see
Vatter [11]).

3 The HD stands for Hadwiger and Debrunner, who originally stated this as a con-
jecture.



The bound we give for Td(m) in the proof of existence in Sec. 2 is huge.
Using this result though, there is a very simple proof for the following,
which we will present in Sec. 3.

Theorem 2. Td(m) ∈ O
(
f(d) ·md

)
for some function f .

That is, for any fixed d this number is polynomial in the size of the largest
independent set, and independent of the total number of objects.

For d = 2, this also partly settles an open question on [2]: The best
known bound [11] was exponential in m, and Theorem 2 gives a quadratic
bound.

Because any set of objects that is intersected by a single hyperplane
forms a clique in the corresponding graph, we get another nice corollary.
For Interval graphs G, which are perfect, it holds that α(G), the indepence
number, is equal to χ(G), the clique partition number. The corollary
shows that unions of Interval graphs have a similar property.

Corollary 2. For any d, there is a constant cd > 0 such that the follow-
ing holds: Let I1, . . . , Id be interval graphs on the same vertex-set V , and
I their union. Let m be the size of the largest independent set in I. Then
α(G) ≤ χ(G) ≤ cd ·md · α(G).

And, by using the pigeonhole-principle, we also get a Ramsey-type
corollary:

Corollary 3. For any d, there is a constant c′d > 0 such that the follow-
ing holds: Let I1, . . . , Id be interval graphs on the same vertex-set V , and
I their union. Then I either contains a clique or an independent set of
size c′d · d+1

√
n (for n large enough).

From computational point of view, this problem has also been con-
sidered: Dom et al. [3] and Giannopoulos et al. [4] independently of each
other showed that the problem of deciding whether a given set of rect-
angles in Rd can be sliced (”stabbed”) by k hyperplanes is W[1]-hard
with respect to k. Also, they both show that the problem for disjoint unit
squares in the plane is fixed-parameter tractable, i.e., can be solved in
time O

(
(4k + 1)kn2

)
. Recently it has been shown by Heggernes et al. [6]

that the problem is even fixed parameter tractable for disjoint rectangles
of arbitrary size.



2 Existence of Td(m)

Let [d] := {1, . . . , d}. For D ⊆ [d], we say that r, r′ are independent with
respect to D, if prD(r) ∩ prD(r′) = ∅. Two sets are called j-disjoint, if
they are disjoint with respect to dimension j.

We will prove Theorem 1 by induction on the dimension d. The prob-
lem one faces here is that even if we do not have an independent set of size
m in d dimensions, we can not say anything about the size of the largest
independent set with respect to lower dimensions: The boxes might all lie
on a common hyperplane orthogonal to ed, i.e., form an independent set
of size 1, but be pairwise disjoint with respect to [d− 1].

Thus, we need to be a little more careful when doing the dimension
reduction. The main observation is that there cannot be too many pair-
wise d-disjoint independent sets of a certain size. This is expressed by the
following lemma:

Lemma 1. Let X be a set of hyperrectangles in Rd that does not have an
independent set of size m. Then we can choose m−1 parallel hyperplanes
such that the remaining4 boxes are partitioned into m sets with the prop-
erty that for each of these sets the largest independent set with respect to
[d− 1] = {1, . . . , d− 1} is of size less than dm(m− 1).

In order to prove this, we need a simple lemma that states that be-
tween two d-disjoint independent sets there cannot be too many inci-
dences.

Lemma 2. Let M1, M2 be two independent sets of intervals. Then the
total number of incidences is at most |M1|+ |M2| − 1.

Corollary 4. If M1,M2 are two sets of rectangles in Rd such that

– each Mi is an independent set with respect to [d− 1]

– M1 and M2 are disjoint with respect to d

then the total number of incidences (dependences) between M1 and M2 is
less than (d− 1) (|M1|+ |M2|).

Proof. By assumption, there are no incidences in dimension d. For each
of the remaining d− 1 dimensions the two sets form sets of disjoint inter-
vals, thus by Lemma 2 can have at most |M1| + |M2| − 1 incidences per
dimension. ut
4 I.e., the boxes not yet intersected by any of these m− 1 planes.



Using this, we can prove the next lemma by a counting argument.

Lemma 3. Let X be a set of hyperrectangles in Rd with no indepen-
dent set of size m and H be a set of m − 1 hyperplanes orthogonal to
ed, partitioning the rectangles into m sets. Then there is a region whose
largest independent set with respect to {1, . . . , d − 1} is of size less than
a := dm(m− 1).

Proof. Assume we have m independent sets of size dm(m − 1) that are
pairwise d-disjoint. Choose a subset of exactly this size from each of the
sets M1, . . . ,Mm. As any selection of one element from each set x ∈

∏
Mi,

of which there are am, must have at least one dependence with respect
to [d− 1] (otherwise we had an independent set of size m in the original
instance), and any dependence counts for at most am−2 such sets, we need
at least am

am−2 = a2 intersections. But because of Corollary 4, the total
number of intersections is at most

(d− 1) ·
∑
i 6=j

(|Mi|+ |Mj | − 1) < d ·
(
m

2

)
· 2a = dm(m− 1) · a = a2.

Thus, at least one of the independent sets must be of smaller size. ut

Now we come to prove the main lemma. The idea is to sweep about the
set with a hyperplane orthogonal to ed and pick hyperplanes subsequently
just before further sweeping would yield a large independent set with
respect to [d− 1] on the negative side. See Fig. 2.

This vague argument is formalized in the following Lemma.

Proof (Lemma 1). For a set R of (closed) rectangles, let βR be minimal
such that the halfspace xd ≤ βR contains a [d− 1] independent set of size
a. (If such a βR does not exist, we are done by induction.) Let h : xd = βR
be the corresponding hyperplane.

Observe that there cannot be a [d−1] independent set of size a strictly
on the negative side of h then, for otherwise h would not be minimal.

For the set R, let Rh denote the set of all rectangles that strictly lie in
the halfspace xd > βR, i.e., the ones that have now ”seen” the sweeping
hyperplane so far.

Now we simply pick hyperplanes hi as follows: h1 : xd = βR, hi+1 : xd =
βRhi

.

Because of Lemma 3, this process stops (i.e., β is undefined) after
we have chosen at most m − 1 hyperplanes, for otherwise we would m



No large (a = 4) independent set with respect to dimension x.

negative side

Large (a = 4) independent set with re-

spect to x on the negative side.

ed

Fig. 1. Schematic drawing of the sweeping procedure.

independent sets with respect to [d − 1] of size a that are pairwise d-
disjoint.

Thus, we have chosen at most m− 1 hyperplanes, and in each of the
at most m induced regions the largest independent set with respect to
[d− 1] is of size less than a. ut

Corollary 5. Td(m) exists.

Proof. The existence of T1(m) is clear, and Lemma 3 yields

Td(m) < m · Td−1 (dm(m− 1)) +m− 1.

ut

3 A polynomial bound

Using the existence of Td(m) from the previous section, in a straightfor-
ward way from this lemma we can derive a much stronger bound for the
higher-dimensional case:



Lemma 4. Let R be a set of boxes in Rd that does not have an indepen-
dent set of size m, then it can be sliced by

Td(m) ≤ (2m− 1)d · Td(d) + (m− 1) · 2d

axis-parallel hyperplanes.

Proof. Given a maximum independent set M of size (m − 1), we choose
a hyperplane through each of the boundaries. This makes a total of (m−
1) · 2d hyperplanes. Any box not intersected yet lies inside one of the at
most (2m− 1)d regions created by these hyperplanes.

The crucial observation now is the following: Any region can have a
nonempty projection with at most d of the boxes in M (at most one for
each direction, as M is an independent set). Thus, each region can contain
an independent of size at most d: Assume we had a box that contained
some independent set M ′ of size d′ > d. Let Md ⊂M be the set of boxes
that have a nonempty intersection with this region. Then M −Md ∪M ′
is an independent set and∣∣(M −Md) ]M ′

∣∣ = |M | − |Md|+ |M ′| ≥ m− d+ d′ ≥ m,

a contradiction.

Thus, we need at most Td(d) additional hyperplanes for each region,
making it a total of (2m− 1)d · Td(d) + (m− 1) · 2d. ut

Corollary 6. For any fixed d we have Td(m) ∈ O
(
md
)
.

Observe how this bound is based on the existence of Td(d) in the first
place!

4 Conclusion and open problems

We have shown that the slicing number for convex objects with bounded
independent set exists in arbitrary dimension, and that it is bounded by
a polynomial for any fixed d. As during the proof in Sec. 3 we are not
very careful with our analysis, we assume that the bound is actually much
stronger:

Conjecture 1. For any fixed d, it holds that Td(m) ∈ O(m).
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5. A. Gyárfás and J. Lehel. A helly-type problem in trees. In P. Erds, A. Rényi,
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